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Abstract: 

This study establishes rigorous existence criteria for positive continuous solutions to a significant class of 

nonlinear quadratic integral equations of Hammerstein type. The equation under consideration takes the form: 

𝑦(𝜏) = 𝑏(𝜏) + ∫  
𝜏

0

𝐻1(𝜏, 𝜎)𝑓1(𝜎, 𝑦(𝜎))𝑑𝜎 ∫  
𝜏

0

𝐻2(𝜏, 𝜎)𝑓2(𝜎, 𝑦(𝜎))𝑑𝜎, 𝜏 ∈ [0, Θ] 

Methodologically, we employ Schauder's fixed-point theorem as our principal analytical tool to derive the 

central existence result. Furthermore, under appropriately formulated monotonicity constraints, we establish the 

existence of both maximal and minimal solutions. These theoretical contributions extend the existing 

mathematical literature on quadratic integral equations by introducing novel methodological frameworks and 

expanding the applicable domain of existence criteria for this important category of nonlinear functional 

equations. 

 

Keywords: Nonlinear Quadratic Integral Equations, Hammerstein-Type Operators, Carathéodory-Class 

Functions, Monotonic Operators, Extremal Solutions, Lebesgue Integration Theory, Schauder Fixed-Point 
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الدراسة التحليلية للحلول المستمرة الموجبة لمعادلات تكاملية تربيعية غير خطية من نوع  

 هامرستين باستخدام مناهج النقطة الثابتة 

 
 2 سليم ، عائشة محمد علي* 1محمد خليل محمد 

 ليبيا   الواحات،جامعة بنغازي،  والعلوم، الآدابقسم الرياضيات، كلية  1
 قسم الرياضيات، كلية العلوم، جامعة مصراتة، مصراتة، ليبيا 2

 الملخص 

التكاملية  المعادلات  من  أهمية  ذات  لفئةٍ  الموجبة  المستمرة  للحلول  صارمة  رياضية  وجودٍ  معايير  الدراسة  هذه  د  تحُد ِّ

 :التربيعية غير الخطية من نوع هامرستين. وتأخذ المعادلة موضوع البحث الصيغة التالية

𝑦(𝜏) = 𝑏(𝜏) + ∫  
𝜏

0

𝐻1(𝜏, 𝜎)𝑓1(𝜎, 𝑦(𝜎))𝑑𝜎 ∫  
𝜏

0

𝐻2(𝜏, 𝜎)𝑓2(𝜎, 𝑦(𝜎))𝑑𝜎, 𝜏 ∈ [0, Θ] 

الأساسية.   الوجود  نتيجة  لاستنتاج  رئيسية  تحليلية  كأداة  الثابتة  للنقطة  شاودر  مبرهنة  نعتمد  المنهجية،  الناحية  من 

)أو تتابعية( مناسبة، نبرهن على وجود كل ٍ من الحل الأقصى والحل الأدنى.    وعلاوةً على ذلك، وبفرض قيود رتوبة 

وتعُدُّ هذه المساهمات النظرية امتدادًا للبحوث الرياضية السابقة حول المعادلات التكاملية التربيعية، من خلال تقديم  

 .أطر منهجية جديدة وتوسيع نطاق تطبيق معايير الوجود ليشمل فئةً مهمة من المعادلات الدالية غير الخطية 
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المفتاحية:  صنف    الكلمات  من  دوال  هامرستين،  نوع  من  مؤث رات  الخطية،  غير  التربيعية  التكاملية  المعادلات 

 .كاراتيودوري، المؤث رات الرتيبة، الحلول القصوى، نظرية التكامل ليبِّغ، منهجية شاودر للنقطة الثابتة 

Introduction 

The analytical study of integral equations occupies a central position in modern mathematical analysis, with 

implications that extend deeply into engineering applications, physical modeling, and various branches of 

applied mathematics. Historically, the emergence of integral equations as a distinct mathematical discipline can 

be traced to foundational work by Du Bois-Reymond in the late nineteenth century [1], which subsequently 

stimulated extensive research interest within the mathematical community. Contemporary scholarship continues 

to develop systematic classification frameworks for specialized categories of these equations, as evidenced by 

comprehensive surveys in the field [2], reflecting their enduring theoretical importance. 

Within this broad mathematical landscape, quadratic integral equations represent a particularly intriguing 

subclass characterized by their inherent nonlinear structural properties. Early mathematical investigations in this 

area emerged from Chandrasekhar's pioneering work on radiative transfer phenomena [3], with subsequent 

applications materializing across diverse domains including kinetic gas theory [4], neutron transport modeling 

[5], and vehicular traffic flow analysis [6]. The persistent appearance of these equations across such varied 

applied contexts underscores their fundamental mathematical significance. 

Our present investigation focuses specifically on establishing comprehensive existence criteria for positive 

continuous solutions associated with Hammerstein-type quadratic integral equations, while simultaneously 

developing methodological frameworks for characterizing extremal solutions under appropriate monotonicity 

conditions. This research endeavor contributes to the existing mathematical literature through the introduction of 

novel analytical techniques and the expansion of applicable existence domains for this important class of 

nonlinear functional equations. By addressing both general existence and the more specialized theory of 

extremal solutions, we aim to provide a more complete theoretical understanding of solution behavior for these 

mathematically rich and practically relevant equations. 

 

Theoretical Foundations and Mathematical Preliminaries 

This section establishes the fundamental mathematical framework and auxiliary results that underpin our 

subsequent analytical developments. We consider the compact temporal interval 𝐽 = [0, Θ], and denote by 𝐿1 =
𝐿1[0, Θ] the Banach space comprising Lebesgue integrable functions defined on 𝐽. 

To facilitate our investigation, we introduce the following foundational assumptions: 

 (A1) The function 𝑏: 𝐽 = [0, Θ] → ℝ+exhibits continuity throughout its domain, with the boundedness 

condition 𝑏 = sup
𝜏∈[0,Θ]

 |𝑏(𝜏)| < ∞ being satisfied. (A2) For each index 𝑖 = 1,2, the following conditions hold: 

• The kernel functions 𝐻𝑖 : [0, Θ] × [0, Θ] → ℝ+demonstrate continuity over their entire domain. 

• The nonlinear component functions 𝑓𝑖: [0, Θ] × ℝ+ → ℝ+belong to the Carathéodory class, being 

measurable in the variable 𝜎 for every fixed 𝑦 ∈ ℝ+ and continuous in 𝑦 for almost every 𝜎 ∈ [0, Θ]. 
• There exist Lebesgue integrable functions 𝑛𝑖(𝜎) ∈ 𝐿1[0, Θ] satisfying the bounding condition: 

|𝑓𝑖(𝜎, 𝑦)| ≤ 𝑛𝑖(𝜎), 𝑖 = 1,2 

with the additional constraint that ∫  
𝜏

0
𝑛𝑖(𝜎)𝑑𝜎 ≤ 𝑁𝑖 , 𝑖 = 1,2, for all 𝜏 ∈ [0, Θ]. 

• The functions 𝑓𝑖 , 𝑖 = 1,2, exhibit monotonic nonincreasing behavior with respect to the temporal 

variable 𝜏 ∈ [0, Θ]. (A3) For the analysis of extremal solutions, we additionally assume that the 

functions 𝑓𝑖(𝜎, 𝑦), 𝑖 = 1,2 demonstrate monotonic non-decreasing behavior in the variable 𝑦 for each 

fixed 𝜎 ∈ [0, Θ]. 
Remark 2.1. The distinction between assumption (A2) and (A3) is crucial. Condition (A2) concerns 

monotonicity with respect to the temporal variable 𝜏 and is used primarily to establish the existence of positive 

continuous solutions via Schauder's fixed point theorem. Condition (A3), by contrast, addresses monotonicity in 

the solution variable 𝑦 and is essential for the development of extremal solution theory in Section 4. This 

separation clarifies the distinct roles these monotonicity conditions play in our analysis. The subsequent 

fundamental theorems play instrumental roles in establishing our principal results, providing the theoretical 

scaffolding upon which our analysis rests. 

Consider a convex subset Ψ of a Banach space ℬ. If the operator ℱ: Ψ → Ψ demonstrates both compactness and 

continuity properties, then ℱ admits at least one fixed point within the domain Ψ [7]. Let ℧ represent a compact 

metric space and 𝐶(℧) denote the Banach space consisting of real or complex-valued continuous functions 

equipped with the supremum norm ‖𝑓‖ = max
𝜏∈℧

 |𝑓(𝜏)|. If the sequence ℵ = {𝑓𝑘} in 𝐶(℧) exhibits both uniform 

boundedness and equicontinuity, then the closure of ℵ constitutes a compact set [8]. 
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Consider a sequence of functions {ℓ𝑘} converging to a limit function ℓ on the domain 𝐴, with the bounding 

condition |ℓ𝑘(𝜏)| ≤ ∅(𝜏) holding for 𝜏 ∈ 𝐴, 𝑘 = 1,2,3, …, where ∅ represents an integrable function over 𝐴. 

Under these conditions, the limit function ℓ maintains integrability over 𝐴 and satisfies: 

lim
𝑘→∞

 ∫  
𝐴

ℓ𝑘(𝜏)𝑑𝜇 = ∫ 
𝐴

ℓ(𝜏)𝑑𝜇 

The following formal definition, originally introduced by Lakshmikantham and colleagues [9], proves essential 

for our subsequent analytical developments concerning extremal solutions. [Maximal and Minimal Solutions 

[9]] Let 𝑐(𝜏) represent a solution of the quadratic integral equation under investigation. This solution 𝑐(𝜏) 

qualifies as a maximal solution if every alternative solution 𝑦(𝜏) of the equation satisfies the inequality 𝑦(𝜏) ≤
𝑐(𝜏) for all 𝜏 ∈ [0, Θ]. Conversely, a minimal solution 𝑑(𝜏) may be defined through reversal of the inequality, 

specifically requiring 𝑦(𝜏) ≥ 𝑑(𝜏) for 𝜏 ∈ [0, Θ]. 
 

Existence of Positive Continuous Solutions 

This section presents the central theoretical contributions of our investigation, establishing existence criteria for 

positive continuous solutions. Let 𝐶 = 𝐶[0, Θ] represent the Banach space comprising continuous functions 

defined on the interval 𝐽, and define the solution candidate set Ω through the specification: 

Ω = {𝑦 ∈ 𝐶: 0 ≤ 𝑦 ≤ 𝑅} ⊂ 𝐶[0, Θ],  where 𝑅 = 𝑏 + 𝑁1𝑁2‖𝐻1‖‖𝐻2‖ 

with the kernel bounds given by ‖𝐻𝑖‖ = sup
(𝜏,𝜎)∈[0,Θ]×[0,Θ]

 |𝐻𝑖(𝜏, 𝜎)|, for 𝑖 = 1,2. The set Ω manifestly satisfies the 

properties of closure, convexity, boundedness, and non-emptiness, thereby constituting an appropriate domain 

for fixed-point analysis. 

Under the validity of assumptions (A1) and (A2), the Hammerstein quadratic integral equation 

𝑦(𝜏) = 𝑏(𝜏) + ∫  
𝜏

0

𝐻1(𝜏, 𝜎)𝑓1(𝜎, 𝑦(𝜎))𝑑𝜎 ∫  
𝜏

0

𝐻2(𝜏, 𝜎)𝑓2(𝜎, 𝑦(𝜎))𝑑𝜎, 𝜏 ∈ [0, Θ] 

admits at least one positive continuous solution 𝑦 ∈ 𝐶[0, Θ]. 
Proof. To establish this fundamental result, we introduce the operator mapping Φ defined by: 

Φ𝑦(𝜏) = 𝑏(𝜏) + ∫  
𝜏

0

𝐻1(𝜏, 𝜎)𝑓1(𝜎, 𝑦(𝜎))𝑑𝜎 ∫  
𝜏

0

𝐻2(𝜏, 𝜎)𝑓2(𝜎, 𝑦(𝜎))𝑑𝜎 

Consider an arbitrary element 𝑦 ∈ Ω. The following bounding relationships emerge through systematic analysis: 

|Φ𝑦(𝜏)| = |𝑏(𝜏) + ∫  
𝜏

0

 𝐻1(𝜏, 𝜎)𝑓1(𝜎, 𝑦(𝜎))𝑑𝜎 ∫  
𝜏

0

 𝐻2(𝜏, 𝜎)𝑓2(𝜎, 𝑦(𝜎))𝑑𝜎|

 ≤ |𝑏(𝜏)| + |∫  
𝜏

0

 𝐻1(𝜏, 𝜎)𝑓1(𝜎, 𝑦(𝜎))𝑑𝜎| |∫  
𝜏

0

 𝐻2(𝜏, 𝜎)𝑓2(𝜎, 𝑦(𝜎))𝑑𝜎|

 ≤ |𝑏(𝜏)| + ∫  
𝜏

0

  |𝐻1(𝜏, 𝜎)𝑓1(𝜎, 𝑦(𝜎))|𝑑𝜎 ∫  
𝜏

0

  |𝐻2(𝜏, 𝜎)𝑓2(𝜎, 𝑦(𝜎))|𝑑𝜎

 ≤ |𝑏(𝜏)| + ‖𝐻1‖ ∫  
𝜏

0

 𝑛1(𝜎)𝑑𝜎 ⋅ ‖𝐻2‖ ∫  
𝜏

0

 𝑛2(𝜎)𝑑𝜎

 ≤ 𝑏 + 𝑁1𝑁2‖𝐻1‖‖𝐻2‖ = 𝑅.

 

Furthermore, the positivity condition 𝑏(𝜏) > 0 combined with the non-negativity of the integral components 

ensures that Φ𝑦(𝜏) ≥ 𝑏(𝜏) > 0. These collective observations demonstrate that Φ𝑦 ∈ Ω and that the image set 

{Φ(𝑦)} maintains uniform boundedness. 

To establish the equicontinuity property, consider temporal parameters 𝜏1, 𝜏2 ∈ [0, Θ] with 𝜏1 < 𝜏2 and |𝜏2 −
𝜏1| ≤ 𝛿. Introducing the auxiliary functionals: 

𝐴(𝜏) = ∫  
𝜏

0

 𝐻1(𝜏, 𝜎)𝑓1(𝜎, 𝑦(𝜎))𝑑𝜎

𝐵(𝜏) = ∫  
𝜏

0

 𝐻2(𝜏, 𝜎)𝑓2(𝜎, 𝑦(𝜎))𝑑𝜎

 

we observe the bounds |𝐴(𝜏)| ≤ 𝐶1 = ‖𝐻1‖𝑁1 and |𝐵(𝜏)| ≤ 𝐶2 = ‖𝐻2‖𝑁2. The difference analysis yields: 
|Φ𝑦(𝜏2) − Φ𝑦(𝜏1)| ≤ |𝑏(𝜏2) − 𝑏(𝜏1)| + |𝐴(𝜏2)𝐵(𝜏2) − 𝐴(𝜏1)𝐵(𝜏1)|

 ≤ |𝑏(𝜏2) − 𝑏(𝜏1)| + 𝐶2|𝐴(𝜏2) − 𝐴(𝜏1)| + 𝐶1|𝐵(𝜏2) − 𝐵(𝜏1)|.
 

Proceeding with the detailed estimation: 
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|𝐴(𝜏2) − 𝐴(𝜏1)| ≤ ∫  
𝜏1

0

  |𝐻1(𝜏2, 𝜎) − 𝐻1(𝜏1, 𝜎)||𝑓1(𝜎, 𝑦(𝜎))|𝑑𝜎

 + ∫  
𝜏2

𝜏1

  |𝐻1(𝜏2, 𝜎)||𝑓1(𝜎, 𝑦(𝜎))|𝑑𝜎

≤ ∫  
𝜏1

0

  |𝐻1(𝜏2, 𝜎) − 𝐻1(𝜏1, 𝜎)|𝑛1(𝜎)𝑑𝜎 + ‖𝐻1‖ ∫  
𝜏2

𝜏1

 𝑛1(𝜎)𝑑𝜎

 

The uniform continuity property of 𝐻1 over the compact domain [0, Θ] × [0, Θ] guarantees that for any 𝜖 > 0, 

there exists 𝛿1 > 0 such that |𝜏2 − 𝜏1| < 𝛿1 implies ∣ 𝐻1(𝜏2, 𝜎) − 𝐻1(𝜏1, 𝜎) ∣< 𝜖 uniformly in 𝜎. Additionally, 

the absolute continuity of the integral ∫  
𝜏

0
𝑛1(𝜎)𝑑𝜎 ensures the existence of 𝛿2 > 0 such that |𝜏2 − 𝜏1| < 𝛿2 

yields ∫  
𝜏2

𝜏1
𝑛1(𝜎)𝑑𝜎 < 𝜖. Consequently, for |𝜏2 − 𝜏1| < min(𝛿1, 𝛿2) : 

|𝐴(𝜏2) − 𝐴(𝜏1)| ≤ 𝜖𝑁1 + ‖𝐻1‖𝜖 = 𝜖(𝑁1 + ‖𝐻1‖) 

Through analogous reasoning, |𝐵(𝜏2) − 𝐵(𝜏1)| ≤ 𝜖(𝑁2 + ‖𝐻2‖). Combining these estimates produces: 
|Φ𝑦(𝜏2) − Φ𝑦(𝜏1)| ≤ |𝑏(𝜏2) − 𝑏(𝜏1)| + 𝐶2𝜖(𝑁1 + ‖𝐻1‖) + 𝐶1𝜖(𝑁2 + ‖𝐻2‖). 

The uniform continuity of 𝑏 enables selection of sufficiently small 𝜖 to render the righthand side arbitrarily 

small, thereby establishing the equicontinuity of {Φ(𝑦)} throughout [0, Θ]. Application of the Arzela-Ascoli 

theorem consequently verifies the compactness property of Φ. 

To demonstrate continuity of the mapping Φ: Ω → Ω, consider a sequence {𝑦𝑘} ⊂ Ω converging uniformly to 𝑦. 

The operator representation becomes: 

Φ𝑦𝑘(𝜏) = 𝑏(𝜏) + ∫  
𝜏

0

𝐻1(𝜏, 𝜎)𝑓1(𝜎, 𝑦𝑘(𝜎))𝑑𝜎 ∫  
𝜏

0

𝐻2(𝜏, 𝜎)𝑓2(𝜎, 𝑦𝑘(𝜎))𝑑𝜎 

The point wise convergence 𝑓𝑖(𝜎, 𝑦𝑘(𝜎)) → 𝑓𝑖(𝜎, 𝑦(𝜎)), 𝑖 = 1,2, coupled with the domination condition 
|𝑓𝑖(𝜎, 𝑦𝑘(𝜎))| ≤ 𝑛𝑖(𝜎), 𝑖 = 1,2, permits application of the Lebesgue dominated convergence theorem, yielding: 

lim
𝑘→∞

 ∫  
𝜏

0

𝐻1(𝜏, 𝜎)𝑓1(𝜎, 𝑦𝑘(𝜎))𝑑𝜎 = ∫  
𝜏

0

𝐻1(𝜏, 𝜎)𝑓1(𝜎, 𝑦(𝜎))𝑑𝜎 

with analogous convergence for the second integral. This establishes uniform convergence Φ𝑦𝑘(𝜏) → Φ𝑦(𝜏), 

thereby verifying the continuity of Φ.  

Having satisfied all requisite conditions of Schauder's fixed-point theorem, the mapping Φ necessarily possesses 

at least one fixed point within 𝐶[0, Θ], which corresponds to a positive continuous solution of the integral 

equation under investigation. 

Assuming the functions 𝑓1, 𝑓2: [0, Θ] × ℝ+ → ℝ+exhibit 𝐿1-Carathéodory characteristics with the bounding 

conditions |𝑓𝑖| ≤ 𝑛𝑖 , 𝑖 = 1,2, and the kernel functions 𝐻1, 𝐻2 maintain continuity throughout [0, Θ] × [0, Θ], then 

the integral equation admits at least one positive continuous solution. 

 

Extremal Solutions Under Monotonicity Conditions 

This section extends our analysis to establish the existence of maximal and minimal solutions under appropriate 

monotonicity constraints. We begin with a comparative lemma that plays a crucial role in our extremal solution 

theory. 

Let the functions 𝑓𝑖(𝜎, 𝑦), 𝑖 = 1,2 satisfy assumptions (A2) and (A3), and consider two continuous functions 

𝑦(𝜏), 𝑧(𝜏) defined on [0, Θ] fulfilling the inequalities: 

𝑦(𝜏) ≤ 𝑏(𝜏) + ∫  
𝜏

0

 𝐻1(𝜏, 𝜎)𝑓1(𝜎, 𝑦(𝜎))𝑑𝜎 ∫  
𝜏

0

 𝐻2(𝜏, 𝜎)𝑓2(𝜎, 𝑦(𝜎))𝑑𝜎, 𝜏 ∈ [0, Θ]

𝑧(𝜏) ≥ 𝑏(𝜏) + ∫  
𝜏

0

 𝐻1(𝜏, 𝜎)𝑓1(𝜎, 𝑧(𝜎))𝑑𝜎 ∫  
𝜏

0

 𝐻2(𝜏, 𝜎)𝑓2(𝜎, 𝑧(𝜎))𝑑𝜎, 𝜏 ∈ [0, Θ]

 

with at least one inequality maintaining strictness. Then: 

𝑦(𝜏) < 𝑧(𝜏), 𝜏 > 0. 
Proof. Proceeding by contradiction, suppose the conclusion fails. Then there exists a parameter value 𝜏1 > 0 

such that 𝑦(𝜏1) = 𝑧(𝜏1) while 𝑦(𝜏) < 𝑧(𝜏) for 0 < 𝜏 < 𝜏1. The monotonicity properties of 𝑓1, 𝑓2 in the variable 

𝑦 (Assumption A3) generate the relationships: 

𝑦(𝜏1) ≤ 𝑏(𝜏1) + ∫  
𝜏1

0

 𝐻1(𝜏1, 𝜎)𝑓1(𝜎, 𝑦(𝜎))𝑑𝜎 ∫  
𝜏1

0

 𝐻2(𝜏1, 𝜎)𝑓2(𝜎, 𝑦(𝜎))𝑑𝜎

 < 𝑏(𝜏1) + ∫  
𝜏1

0

 𝐻1(𝜏1, 𝜎)𝑓1(𝜎, 𝑧(𝜎))𝑑𝜎 ∫  
𝜏1

0

 𝐻2(𝜏1, 𝜎)𝑓2(𝜎, 𝑧(𝜎))𝑑𝜎 ≤ 𝑧(𝜏1)

 

which contradicts the assumption 𝑦(𝜏1) = 𝑧(𝜏1). Consequently, the strict inequality 𝑦(𝜏) < 𝑧(𝜏) must hold for 

all 𝜏 > 0. ◻ 

Under the validity of assumptions (A1), (A2), and (A3), the integral equation admits both maximal and 

minimal solutions. 
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Proof. The existence of the maximal solution is established first. For an arbitrary parameter 𝜖 > 0, consider the 

modified equation: 

𝑦𝜖(𝜏) = 𝑏(𝜏) + ∫  
𝜏

0

𝐻1(𝜏, 𝜎)𝑓1𝜖(𝜎, 𝑦𝜖(𝜎))𝑑𝜎 ∫  
𝜏

0

𝐻2(𝜏, 𝜎)𝑓2𝜖(𝜎, 𝑦𝜖(𝜎))𝑑𝜎, 𝜏 ∈ [0, Θ] 

where the modified nonlinearities are defined by 𝑓𝑖𝜖(𝜎, 𝑦𝜖(𝜎)) = 𝑓𝑖(𝜎, 𝑦𝜖(𝜎)) + 𝜖, 𝑖 = 1,2. 

These modified functions 𝑓𝑖𝜖(𝜎, 𝑦𝜖(𝜎)), 𝑖 = 1,2 maintain 𝐿1-Carathéodory properties, ensuring existence of 

solutions in 𝐶[0, Θ]. For parameters 𝜖1, 𝜖2 satisfying 0 < 𝜖2 < 𝜖1 < 𝜖, the representations become: 

𝑦𝜖2
(𝜏) = 𝑏(𝜏) + ∫  

𝜏

0

 𝐻1(𝜏, 𝜎)𝑓1𝜖2
(𝜎, 𝑦𝜖2

(𝜎))𝑑𝜎 ∫  
𝜏

0

 𝐻2(𝜏, 𝜎)𝑓2𝜖2
(𝜎, 𝑦𝜖2

(𝜎))𝑑𝜎

 = 𝑏(𝜏) + ∫  
𝜏

0

 𝐻1(𝜏, 𝜎)(𝑓1(𝜎, 𝑦𝜖2
(𝜎)) + 𝜖2)𝑑𝜎 ∫  

𝜏

0

 𝐻2(𝜏, 𝜎)(𝑓2(𝜎, 𝑦𝜖2
(𝜎)) + 𝜖2)𝑑𝜎

 

with analogous expressions for 𝑦𝜖1
(𝜏). Application of Lemma 4 yields 𝑦𝜖2

(𝜏) < 𝑦𝜖1
(𝜏) throughout 𝜏 ∈ [0, Θ]. 

As previously established, the family 𝑦𝜖(𝜏) demonstrates both equicontinuity and uniform boundedness. 

Consequently, the Arzela-Ascoli theorem guarantees the existence of a decreasing sequence 𝜖𝑘 with 𝜖𝑘 → 0 as 

𝑘 → ∞, such that lim
𝑘→∞

 𝑦𝜖𝑘
(𝜏) converges uniformly on [0, Θ]. Denoting this uniform limit by 𝑞(𝜏), and observing 

the continuity of 𝑓𝑖(𝜎, 𝑦𝜖(𝜎)), 𝑖 = 1,2 in the third argument, we obtain: 

𝑓𝑖(𝜎, 𝑦𝜖𝑘
(𝜎)) → 𝑓𝑖(𝜎, 𝑦(𝜎))  as 𝑘 → ∞, 𝑖 = 1,2. 

Thus, 

𝑞(𝜏) = lim
𝑘→∞

 𝑦𝜖𝑘
(𝜏) = 𝑏(𝜏) + ∫  

𝜏

0

𝐻1(𝜏, 𝜎)𝑓1(𝜎, 𝑞(𝜎))𝑑𝜎 ∫  
𝜏

0

𝐻2(𝜏, 𝜎)𝑓2(𝜎, 𝑞(𝜎))𝑑𝜎 

verifying that 𝑞(𝜏) constitutes a solution of the original integral equation. To establish the maximality property, 

let 𝑦(𝜏) represent an arbitrary solution of the integral equation: 

𝑦(𝜏) = 𝑏(𝜏) + ∫  
𝜏

0

𝐻1(𝜏, 𝜎)𝑓1(𝜎, 𝑦(𝜎))𝑑𝜎 ∫  
𝜏

0

𝐻2(𝜏, 𝜎)𝑓2(𝜎, 𝑦(𝜎))𝑑𝜎 

Application of Lemma 4 to 𝑦(𝜏) and 𝑦𝜖(𝜏) yields 𝑦(𝜏) < 𝑦𝜖(𝜏) for 𝜏 ∈ [0, Θ]. Since 𝑦𝜖(𝜏) converges uniformly 

to 𝑞(𝜏) as 𝜖 → 0, it follows that 𝑦(𝜏) ≤ 𝑞(𝜏) throughout [0, Θ]. The uniqueness property of the maximal 

solution, as established in [9], confirms that 𝑞(𝜏) represents the maximal solution. 

For the existence of the minimal solution, we employ a careful construction to ensure positivity. Consider the 

modified nonlinearities defined by: 

𝑓𝑖𝜖(𝜎, 𝑦𝜖(𝜎)) = max {𝑓𝑖(𝜎, 𝑦𝜖(𝜎)) − 𝜖,
𝜖

2(1 + ‖𝐻1‖‖𝐻2‖Θ2)
} , 𝑖 = 1,2. 

This modification ensures that 𝑓𝑖𝜖(𝜎, 𝑦𝜖(𝜎)) > 0 while maintaining the 𝐿1-Carathéodory properties. The 

additional term guarantees that the product of integrals remains bounded away from zero, preserving the 

positivity of solutions. 

Let 𝑦𝜖(𝜏) denote the corresponding solution. For parameters 𝜖1, 𝜖2 with 0 < 𝜖2 < 𝜖1, we now have 𝑦𝜖2
(𝜏) >

𝑦𝜖1
(𝜏) throughout 𝜏 ∈ [0, Θ], establishing a decreasing family of solutions. The Arzela-Ascoli theorem again 

guarantees the existence of an increasing sequence 𝜖𝑘 → 0 such that 𝑦𝜖𝑘
(𝜏) converges uniformly to a limit 

function 𝑝(𝜏). The uniform convergence and continuity properties ensure that: 

𝑝(𝜏) = lim
𝑘→∞

 𝑦𝜖𝑘
(𝜏) = 𝑏(𝜏) + ∫  

𝜏

0

𝐻1(𝜏, 𝜎)𝑓1(𝜎, 𝑝(𝜎))𝑑𝜎 ∫  
𝜏

0

𝐻2(𝜏, 𝜎)𝑓2(𝜎, 𝑝(𝜎))𝑑𝜎 

verifying that 𝑝(𝜏) constitutes a solution. The minimality property follows by analogous reasoning to the 

maximal case, confirming that 𝑝(𝜏) represents the minimal solution. Assuming the functions 𝑓1 and 𝑓2 exhibit 

non-decreasing behavior in their second argument and the conditions of Corollary 3 remain satisfied, then the 

integral equation admits both maximal and minimal solutions. 

 

Research Contributions and Comparative Analysis 

Our investigation makes several distinct contributions to the mathematical theory of nonlinear integral 

equations. The primary innovation lies in developing a comprehensive analytical framework for establishing 

existence criteria for positive continuous solutions to Hammerstein-type quadratic integral equations. This 

methodological approach extends beyond prior research by incorporating more generalized kernel structures and 

nonlinearities, thereby expanding the applicable domain of existence theory for this important class of functional 

equations. 

When situated within the broader scholarly conversation, our work demonstrates meaningful connections to 

several related research trajectories while maintaining its distinctive contributions. The approach adopted by 

[10], for instance, focused primarily on integral equations with simplified kernel structures, whereas our work 

incorporates more general Hammerstein-type operators with dual kernel components. Similarly, while [11] 
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employed Banach fixed-point methodology for Urysohn quadratic equations, we leverage Schauder's fixed-point 

theorem to establish existence under less restrictive compactness conditions. 

The relationship between our current investigation and the research program developed by Fayed and 

collaborators deserves particular attention. Their extensive work on periodic solutions of neutral differential 

equations with various delay structures [12,13] establishes an important conceptual backdrop for understanding 

solution behavior in complex functional equations. Where their analysis emphasized periodic solutions in 

neutral differential systems, our investigation extends this line of inquiry to non-periodic solutions of 

Hammerstein-type quadratic integral equations, thereby addressing a fundamentally different class of problems 

that arise in distinct applied contexts. 

Building on this foundation, the stability analysis in nonlinear neutral systems conducted by Althubiti and 

colleagues [14] provides crucial theoretical background that informs our understanding of solution behavior in 

sophisticated nonlinear systems. The methodological insights gained from Makhzoum's existence and 

uniqueness analysis for periodic solutions in nonlinear neutral differential equations [15] further strengthen our 

analytical framework, even as we adapt these approaches to the different challenges presented by quadratic 

integral equations. 

Furthermore, recent contributions by [16] on Urysohn quadratic integral equations and the investigations of [12] 

[12 on nonlinear Langevin equations provide additional context for understanding the broader landscape of 

fixed-point applications in nonlinear analysis. The work of [17] on fixed point theorems in ordered b-metric 

spaces offers complementary methodological perspectives that enrich our theoretical approach. 

What distinguishes our current contribution is the systematic development of extremal solution theory under 

monotonicity conditions, which represents a substantial theoretical advancement beyond standard existence 

results. By integrating insights from these related research programs while introducing novel analytical 

techniques specifically tailored to quadratic integral equations, we bridge an important gap in the mathematical 

literature. This integrated approach allows us to provide a more comprehensive theoretical framework for 

analyzing this important class of nonlinear functional equations, one that acknowledges its connections to 

broader mathematical traditions while advancing specific new results within its specialized domain. 

 

Conclusion 

This investigation has established comprehensive existence criteria for positive continuous solutions of 

Hammerstein-type quadratic integral equations through methodological application of Schauder's fixed-point 

theorem. Our analytical framework demonstrates that under appropriately formulated continuity, boundedness, 

and Carathéodory conditions, such nonlinear integral equations necessarily admit positive continuous solutions. 

Furthermore, we have extended the theoretical landscape by establishing conditions guaranteeing the existence 

of maximal and minimal solutions under monotonicity constraints on the nonlinear components. These findings 

significantly expand the mathematical understanding of solution behavior for this important class of nonlinear 

functional equations and provide robust analytical tools for investigating similar mathematical structures in 

applied contexts. 

The methodological approaches we have developed offer promising avenues for future research, including 

potential extensions to fractional-order quadratic integral equations, systems of coupled quadratic integral 

equations, and applications to boundary value problems with nonlinear integral constraints. Our theoretical 

framework provides a solid foundation for further analytical developments in the general theory of nonlinear 

integral equations. 
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