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Abstract:
This study establishes rigorous existence criteria for positive continuous solutions to a significant class of
nonlinear quadratic integral equations of Hammerstein type. The equation under consideration takes the form:

y(@) = b(2) + f Hy(7, 0 (0, y(0))do f Hy(1,0)f3(0, y(0))do, T € [0,6]
0 0

Methodologically, we employ Schauder's fixed-point theorem as our principal analytical tool to derive the
central existence result. Furthermore, under appropriately formulated monotonicity constraints, we establish the
existence of both maximal and minimal solutions. These theoretical contributions extend the existing
mathematical literature on quadratic integral equations by introducing novel methodological frameworks and
expanding the applicable domain of existence criteria for this important category of nonlinear functional
equations.
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Introduction

The analytical study of integral equations occupies a central position in modern mathematical analysis, with
implications that extend deeply into engineering applications, physical modeling, and various branches of
applied mathematics. Historically, the emergence of integral equations as a distinct mathematical discipline can
be traced to foundational work by Du Bois-Reymond in the late nineteenth century [1], which subsequently
stimulated extensive research interest within the mathematical community. Contemporary scholarship continues
to develop systematic classification frameworks for specialized categories of these equations, as evidenced by
comprehensive surveys in the field [2], reflecting their enduring theoretical importance.

Within this broad mathematical landscape, quadratic integral equations represent a particularly intriguing
subclass characterized by their inherent nonlinear structural properties. Early mathematical investigations in this
area emerged from Chandrasekhar's pioneering work on radiative transfer phenomena [3], with subsequent
applications materializing across diverse domains including kinetic gas theory [4], neutron transport modeling
[5], and vehicular traffic flow analysis [6]. The persistent appearance of these equations across such varied
applied contexts underscores their fundamental mathematical significance.

Our present investigation focuses specifically on establishing comprehensive existence criteria for positive
continuous solutions associated with Hammerstein-type quadratic integral equations, while simultaneously
developing methodological frameworks for characterizing extremal solutions under appropriate monotonicity
conditions. This research endeavor contributes to the existing mathematical literature through the introduction of
novel analytical techniques and the expansion of applicable existence domains for this important class of
nonlinear functional equations. By addressing both general existence and the more specialized theory of
extremal solutions, we aim to provide a more complete theoretical understanding of solution behavior for these
mathematically rich and practically relevant equations.

Theoretical Foundations and Mathematical Preliminaries

This section establishes the fundamental mathematical framework and auxiliary results that underpin our
subsequent analytical developments. We consider the compact temporal interval J = [0, ©], and denote by L' =
L]0, ©] the Banach space comprising Lebesgue integrable functions defined on J.

To facilitate our investigation, we introduce the following foundational assumptions:

(A1) The function b:J = [0,0] » R*exhibits continuity throughout its domain, with the boundedness

condition b = sup |b(t)| < oo being satisfied. (A2) For each index i = 1,2, the following conditions hold:
T7€[0,0]

e The kernel functions H;: [0, ] x [0, 0] » R*demonstrate continuity over their entire domain.
e The nonlinear component functions f;:[0,0] X R* - R*belong to the Carathéodory class, being
measurable in the variable o for every fixed y € R* and continuous in y for almost every o € [0, 0].
e There exist Lebesgue integrable functions n; (o) € L'[0, 0] satisfying the bounding condition:
fi(. )| s ny(0),i = 1,2

with the additional constraint that fOT n;(o)do < N;,i = 1,2, forall T € [0, O].

e The functions f;,i = 1,2, exhibit monotonic nonincreasing behavior with respect to the temporal
variable 7 € [0,0]. (A3) For the analysis of extremal solutions, we additionally assume that the
functions f;(a,y),i = 1,2 demonstrate monotonic non-decreasing behavior in the variable y for each
fixed o € [0, BO].

Remark 2.1. The distinction between assumption (A2) and (A3) is crucial. Condition (A2) concerns
monotonicity with respect to the temporal variable T and is used primarily to establish the existence of positive
continuous solutions via Schauder's fixed point theorem. Condition (A3), by contrast, addresses monotonicity in
the solution variable y and is essential for the development of extremal solution theory in Section 4. This
separation clarifies the distinct roles these monotonicity conditions play in our analysis. The subsequent
fundamental theorems play instrumental roles in establishing our principal results, providing the theoretical
scaffolding upon which our analysis rests.

Consider a convex subset W of a Banach space B. If the operator F: ¥ — W demonstrates both compactness and
continuity properties, then F admits at least one fixed point within the domain W [7]. Let U represent a compact
metric space and C(U) denote the Banach space consisting of real or complex-valued continuous functions
equipped with the supremum norm ||f]|| = rgleegq f(©)]. If the sequence ¥ = {f;} in C(U) exhibits both uniform

boundedness and equicontinuity, then the closure of X constitutes a compact set [8].
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Consider a sequence of functions {#;,} converging to a limit function £ on the domain A, with the bounding
condition |€(7)| < @(t) holding for T € A,k = 1,2,3, ..., where @ represents an integrable function over A.
Under these conditions, the limit function £ maintains integrability over A and satisfies:

lim fA £ (2)dyt = fA (0)du

The following formal definition, originally introduced by Lakshmikantham and colleagues [9], proves essential
for our subsequent analytical developments concerning extremal solutions. [Maximal and Minimal Solutions
[91] Let c(t) represent a solution of the quadratic integral equation under investigation. This solution c(7)
qualifies as a maximal solution if every alternative solution y(7) of the equation satisfies the inequality y(7) <
c(7) for all T € [0, ®]. Conversely, a minimal solution d(7) may be defined through reversal of the inequality,
specifically requiring y(7) = d(r) for T € [0, ©].

Existence of Positive Continuous Solutions

This section presents the central theoretical contributions of our investigation, establishing existence criteria for
positive continuous solutions. Let C = C[0, ©] represent the Banach space comprising continuous functions
defined on the interval J, and define the solution candidate set () through the specification:

QO={yeC:0<y<R}cC(C[0,0], where R = b + N, N,||Hy||||H;||
with the kernel bounds given by ||H;|| = sup |H;(t,0)|, for i = 1,2. The set Q manifestly satisfies the
(7,0)€[0,0]%[0,0]
properties of closure, convexity, boundedness, and non-emptiness, thereby constituting an appropriate domain
for fixed-point analysis.

Under the validity of assumptions (A1) and (A2), the Hammerstein quadratic integral equation
T T

Y@ = b(x) + fo Hy(z,0)f, (0, y(0))do fo H,(t,0)f, (0, y(0))do, T € [0,0]

admits at least one positive continuous solution y € C[0, O].
Proof. To establish this fundamental result, we introduce the operator mapping @ defined by:

®y(r) = b() + f Hy(7,0)1(0, y(0))do j Hy (1,0)f3(0, y(@))do
0 0

Consider an arbitrary element y € Q. The following bounding relationships emerge through systematic analysis:

oy@] = b+ |

Hl(T,U)fl(U,)/(G))dGJ Hz(T,U)fz(UIY(U))dU|
0 0

< |b()| +

f Hy (7, 0) 1 (0, y(0))do f Hy (1,0)f3 (0, y(0))do
0 0

< b + j |Hy (2, 0)f (0, y(0))|do j |Hy(z, 0) (0, y(0))do
0 0

< 1b@)] + IIH f ny(0)do - |11 f ny(0)do
0 0

< b+ NN, |l H, Il H, ]l = R.
Furthermore, the positivity condition b(t) > 0 combined with the non-negativity of the integral components
ensures that ®y(t) = b(t) > 0. These collective observations demonstrate that ®y €  and that the image set
{®(y)} maintains uniform boundedness.
To establish the equicontinuity property, consider temporal parameters 74,7, € [0, 0] with 7, < T, and |7, —
7,| < §. Introducing the auxiliary functionals:

A = f Hy (1,0); (0, y(0))do

B = [ H@a)f(0y()do

we observe the bounds |A(7)| < C; = ||H,||N; and |B(7)| < C, = ||H,||N,. The difference analysis yields:
[Py (72) — Py (T)] < |b(72) — b(z)| + |A(72)B(z2) — A(71)B(7y)]
< |b(z2) — b(z)| + C|A(z2) — A(z)| + C1|B(z2) — B(z)l.
Proceeding with the detailed estimation:
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T

A(T,) — Aty < f ' Hy (12, 0) — Hy (1, )IIfi (0, y(0))|do

0

+ f |l (1 DIfi (0, y(0))ldo

1
T1 T2
< f |H,y (20, 0) — Hy (11, )y (0)dor + [1Hy | f n,(0)do
0 T1

The uniform continuity property of H; over the compact domain [0, ®] X [0, ®] guarantees that for any € > 0,
there exists §; > 0 such that |1, — 74| < &, implies | H; (t,, o) — H;(t4,0) |< € uniformly in . Additionally,
the absolute continuity of the integral fOT n,(o)do ensures the existence of §, > 0 such that |1, — ;] < 6,
yields f:lz n,(o)do < e. Consequently, for |7, — ;| < min(6;, 5,) :

|A(T2) — A(T1)| < €Ny + ||Hyll€ = e(Ny + [|Hq 1)

Through analogous reasoning, |B(7;) — B(t,)| < €(N, + ||H;||). Combining these estimates produces:

|y (1) — Py (ry)| < |b(2) — b(zr)| + Coe(Ny + [|Hy|]) + Cre(N, + [[H|D.
The uniform continuity of b enables selection of sufficiently small € to render the righthand side arbitrarily
small, thereby establishing the equicontinuity of {®(y)} throughout [0, ®]. Application of the Arzela-Ascoli
theorem consequently verifies the compactness property of ®.
To demonstrate continuity of the mapping ®: Q — Q, consider a sequence {y, } € Q converging uniformly to y.
The operator representation becomes:

Sy, (1) = b() + f Hy (1, 0) (0, yc(0))do f Hy (t,0)f,(0, v (0))do
0 0

The point wise convergence f;(a,y(0)) = fi(o,v(0)),i = 1,2, coupled with the domination condition

lfi(o, vy (0))| < n;(0),i = 1,2, permits application of the Lebesgue dominated convergence theorem, yielding:
T

,lii?of Hl(T'O-)fl(o-ryk(o-))do':f H,(z,0)f1(0,y(0))do
0 0

with analogous convergence for the second integral. This establishes uniform convergence @y, (1) = ®y(1),
thereby verifying the continuity of ®.

Having satisfied all requisite conditions of Schauder's fixed-point theorem, the mapping @ necessarily possesses
at least one fixed point within C[0, ®], which corresponds to a positive continuous solution of the integral
equation under investigation.

Assuming the functions fi, f>:[0,0] X Rt —» R*exhibit L'-Carathéodory characteristics with the bounding
conditions |f;| < n;, i = 1,2, and the kernel functions H;, H, maintain continuity throughout [0, ©] X [0, 6], then
the integral equation admits at least one positive continuous solution.

Extremal Solutions Under Monotonicity Conditions

This section extends our analysis to establish the existence of maximal and minimal solutions under appropriate
monotonicity constraints. We begin with a comparative lemma that plays a crucial role in our extremal solution
theory.

Let the functions f;(o,y),i = 1,2 satisfy assumptions (A2) and (A3), and consider two continuous functions
(1), z(t) defined on [0, O] fulfilling the inequalities:

Y1) < b(D) + ] Hy(1, 0)f1(0, y(0))do ] Hy(1,0)f3(0, y(@))do, T € [0,0]
0 0

T T

z(t) = b(7) +J Hy(z, a)fl(a,z(a))daj H,(t,0)f;(0,z(0))do, Tt€]0,0]
0 0

with at least one inequality maintaining strictness. Then:

y(t) < z(r), T > 0.
Proof. Proceeding by contradiction, suppose the conclusion fails. Then there exists a parameter value 7; > 0
such that y(7;) = z(t,) while y(t) < z(7) for 0 < T < 7;. The monotonicity properties of f;, f, in the variable
vy (Assumption A3) generate the relationships:

y(t) < b(zy) + f '

Hy (11, 0)f1(0, y(0))do f " Hy (11, ) fy(0, y(0))do

T T

<b(r) + f " Hy (11, 0)f (0, 2(0))do f " Hy (11, )y (0, 2(0))do < 2(2)

which contradicts the assumption y(t;) = z(7;). Consequently, the strict inequality y(7) < z(t) must hold for
allt > 0.0

Under the validity of assumptions (Al), (A2), and (A3), the integral equation admits both maximal and
minimal solutions.
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Proof. The existence of the maximal solution is established first. For an arbitrary parameter € > 0, consider the
modified equation:

Ye(®) = b() + f Hy(1,0)f2c(0, 7. (0))do f Hy (1,0)f3 (0, y.(0))do, T € [0, ]

where the modified nonlinearities are defined by fi.(0,¥.(0)) = fi(0,y:(0)) +€,i =1,2.
These modified functions f; (o, y.(0)),i = 1,2 maintain L!-Carathéodory properties, ensuring existence of
solutions in C[0, @]. For parameters €,, €, satisfying 0 < €, < €; < €, the representations become:

T

Yo ® =@ + [ HEfie, (0,76, 0)d0 [ Hy @ e, (0,36, ()do

= b(D) + f Hy(1,0)(f1(0, e, (0)) + €)do f Hy (1, 0)(£(0, e, (0)) + €,)do

with analogous expressions for y,, (7). Application of Lemma 4 yields y,, (t) < Y., (t) throughout 7 € [0, ©].

As previously established, the family y.(t) demonstrates both equicontinuity and uniform boundedness.
Consequently, the Arzela-Ascoli theorem guarantees the existence of a decreasing sequence €, with €, — 0 as
k — oo, such that 111—{?0 Ye, (T) converges uniformly on [0, ©]. Denoting this uniform limit by g(7), and observing

the continuity of f; (o, y.(0)),i = 1,2 in the third argument, we obtain:

fl-(cr,yek(a)) - fi(o,y(0)) ask » oo,i = 1,2.
Thus,

4@ = Jimye, @ =@ + [ H@DA@@)s | Hy(m0)f(0,a0))do
0 0

verifying that q(7) constitutes a solution of the original integral equation. To establish the maximality property,

let y(7) represent an arbitrary solution of the integral equation:
T T

y(@) = b(D) + fo Hy(1,0)f,(0, y(0))do fo Hy (1, 0)f3(0,y(0))do

Application of Lemma 4 to y(t) and y.(7) yields y(t) < y.(t) for t € [0, ©]. Since y,.(7) converges uniformly
to q(7) as € = 0, it follows that y(7) < q(7) throughout [0, 0]. The uniqueness property of the maximal
solution, as established in [9], confirms that q(7) represents the maximal solution.
For the existence of the minimal solution, we employ a careful construction to ensure positivity. Consider the
modified nonlinearities defined by:

€

fie(0,¥:(0)) = max{fi(a,ye(a)) e ||H1||||H2||G)2)}’i =12

This modification ensures that f;.(c,y.(c)) > 0 while maintaining the L!-Carathéodory properties. The
additional term guarantees that the product of integrals remains bounded away from zero, preserving the
positivity of solutions.

Let y.(t) denote the corresponding solution. For parameters €;, €, with 0 < €, < €1, we now have y,, (7) >
Ye, () throughout 7 € [0, O], establishing a decreasing family of solutions. The Arzela-Ascoli theorem again
guarantees the existence of an increasing sequence €, — 0 such that y,, () converges uniformly to a limit
function p(7). The uniform convergence and continuity properties ensure that:

p(®) = lim y,, (1) = b(x) + f Hy (1,0)f; (0, p(0))do f Hy (1,0)f3 (0, p(0))do
0 0

verifying that p(t) constitutes a solution. The minimality property follows by analogous reasoning to the
maximal case, confirming that p(7) represents the minimal solution. Assuming the functions f; and f, exhibit
non-decreasing behavior in their second argument and the conditions of Corollary 3 remain satisfied, then the
integral equation admits both maximal and minimal solutions.

Research Contributions and Comparative Analysis

Our investigation makes several distinct contributions to the mathematical theory of nonlinear integral
equations. The primary innovation lies in developing a comprehensive analytical framework for establishing
existence criteria for positive continuous solutions to Hammerstein-type quadratic integral equations. This
methodological approach extends beyond prior research by incorporating more generalized kernel structures and
nonlinearities, thereby expanding the applicable domain of existence theory for this important class of functional
equations.

When situated within the broader scholarly conversation, our work demonstrates meaningful connections to
several related research trajectories while maintaining its distinctive contributions. The approach adopted by
[10], for instance, focused primarily on integral equations with simplified kernel structures, whereas our work
incorporates more general Hammerstein-type operators with dual kernel components. Similarly, while [11]
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employed Banach fixed-point methodology for Urysohn quadratic equations, we leverage Schauder's fixed-point
theorem to establish existence under less restrictive compactness conditions.

The relationship between our current investigation and the research program developed by Fayed and
collaborators deserves particular attention. Their extensive work on periodic solutions of neutral differential
equations with various delay structures [12,13] establishes an important conceptual backdrop for understanding
solution behavior in complex functional equations. Where their analysis emphasized periodic solutions in
neutral differential systems, our investigation extends this line of inquiry to non-periodic solutions of
Hammerstein-type quadratic integral equations, thereby addressing a fundamentally different class of problems
that arise in distinct applied contexts.

Building on this foundation, the stability analysis in nonlinear neutral systems conducted by Althubiti and
colleagues [14] provides crucial theoretical background that informs our understanding of solution behavior in
sophisticated nonlinear systems. The methodological insights gained from Makhzoum's existence and
uniqueness analysis for periodic solutions in nonlinear neutral differential equations [15] further strengthen our
analytical framework, even as we adapt these approaches to the different challenges presented by quadratic
integral equations.

Furthermore, recent contributions by [16] on Urysohn quadratic integral equations and the investigations of [12]
[12 on nonlinear Langevin equations provide additional context for understanding the broader landscape of
fixed-point applications in nonlinear analysis. The work of [17] on fixed point theorems in ordered b-metric
spaces offers complementary methodological perspectives that enrich our theoretical approach.

What distinguishes our current contribution is the systematic development of extremal solution theory under
monotonicity conditions, which represents a substantial theoretical advancement beyond standard existence
results. By integrating insights from these related research programs while introducing novel analytical
techniques specifically tailored to quadratic integral equations, we bridge an important gap in the mathematical
literature. This integrated approach allows us to provide a more comprehensive theoretical framework for
analyzing this important class of nonlinear functional equations, one that acknowledges its connections to
broader mathematical traditions while advancing specific new results within its specialized domain.

Conclusion

This investigation has established comprehensive existence criteria for positive continuous solutions of
Hammerstein-type quadratic integral equations through methodological application of Schauder's fixed-point
theorem. Our analytical framework demonstrates that under appropriately formulated continuity, boundedness,
and Carathéodory conditions, such nonlinear integral equations necessarily admit positive continuous solutions.
Furthermore, we have extended the theoretical landscape by establishing conditions guaranteeing the existence
of maximal and minimal solutions under monotonicity constraints on the nonlinear components. These findings
significantly expand the mathematical understanding of solution behavior for this important class of nonlinear
functional equations and provide robust analytical tools for investigating similar mathematical structures in
applied contexts.

The methodological approaches we have developed offer promising avenues for future research, including
potential extensions to fractional-order quadratic integral equations, systems of coupled quadratic integral
equations, and applications to boundary value problems with nonlinear integral constraints. Our theoretical
framework provides a solid foundation for further analytical developments in the general theory of nonlinear
integral equations.
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