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Abstract:

Hierarchical cluster analysis represents a fundamental technique in unsupervised machine learning and
exploratory data analysis, with applications spanning numerous scientific disciplines. This study presents a
comprehensive comparative analysis of four principal hierarchical clustering methods: single linkage, complete
linkage, average linkage, and Ward's method. The primary objective is to evaluate the performance
characteristics, strengths, and limitations of each approach across diverse data structures and clustering
scenarios. Through systematic simulation studies implemented in R software, we generated synthetic datasets
with varying cluster properties, including different shapes, densities, and noise levels. Performance evaluation
utilized multiple metrics including silhouette coefficients, cophenetic correlation, and cluster validity indices.
Results demonstrate that Ward's method consistently produces the most compact and well-separated clusters for
spherical cluster structures, achieving superior silhouette scores (mean = 0.78) compared to other methods.
Complete linkage showed robust performance against outliers but exhibited sensitivity to cluster size variations.
Single linkage effectively identified elongated clusters but suffered from chaining effects in noisy datasets.
Average linkage provided balanced performance across different scenarios, serving as a reliable middle-ground
approach. The findings reveal significant performance dependencies on data characteristics, suggesting that
method selection should be guided by prior knowledge of underlying cluster structures. This research
contributes to the understanding of hierarchical clustering method selection and provides practical guidelines for
practitioners in choosing appropriate algorithms for specific data analysis contexts.
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Introduction

Cluster analysis constitutes one of the most fundamental and widely applied techniques in unsupervised
machine learning, pattern recognition, and exploratory data analysis [1,2]. Among the various clustering
paradigms, hierarchical clustering methods have garnered significant attention due to their ability to reveal the
nested structure of data and provide intuitive visual representations through dendrogram [3,4]. Unlike partitional
clustering algorithms that produce flat partitions, hierarchical methods construct tree-like structures that capture
relationships at multiple scales, making them particularly valuable for exploratory analysis and hypothesis
generation [5].

The theoretical foundations of hierarchical clustering trace back to the early work in taxonomy and numerical
classification during the 1960s [6,7]. The fundamental principle underlying these methods involves the iterative
merging of the closest clusters based on a specified proximity measure, creating a hierarchy that can be
visualized as a dendrogram. The choice of linkage criterion, which defines how the distance between clusters is
calculated, significantly influences the resulting cluster structure and has been the subject of extensive research
[8,9].

Four primary linkage methods have emerged as the most prevalent approaches in hierarchical clustering: single
linkage (nearest neighbor), complete linkage (furthest neighbor), average linkage (group average), and Ward's
method (minimum variance). Each method embodies distinct mathematical formulations and theoretical
assumptions that lead to different clustering behaviors and optimal applications [10,11].

Single linkage, also known as the minimum method, defines the distance between two clusters as the minimum
distance between any two points in the different clusters. Mathematically, for clusters C; and C;, the distance is
expressed as dmin(Ci, Cj) = min{d(x, y):x€C;,y € Cj}[IZ]. This method demonstrates particular
effectiveness in identifying elongated or irregularly shaped clusters but is susceptible to the chaining effect,
where clusters are connected through sequences of intermediate points [13].

Complete linkage adopts the opposite strategy by defining inter-cluster distance as the maximum distance
between any two points in different clusters: dmax(Ci, Cj) = max{d(x, y):x€C;,y€ Cj} [14]. This approach
tends to produce compact, spherical clusters and exhibits greater robustness to outliers compared to single
linkage, though it may struggle with clusters of varying sizes or densities [15].

Average linkage represents a compromise between single and complete linkage methods, computing the average

distance between all pairs of points in clusters: dg,g (Ci,Cj) = (1/(|Ci| X |Cj|))2xeci ZyECj d(x,y)[16]. This

method often provides balanced performance across different cluster shapes and sizes, making it a popular
choice for general-purpose applications [17].

Ward's method, based on the minimum variance criterion, seeks to minimize the within-cluster sum of squares
at each merging step. The distance between clusters is defined as the increase in total within-cluster sum of
squares that results from merging: ASS = SS(C; U C;) — SS(C;) — SS(C;). This method typically produces
compact, roughly equal-sized clusters and has demonstrated superior performance for many real-world
applications [18,19]

Despite extensive individual studies of these methods, comparative analyses addressing their relative
performance across diverse data characteristics remain limited. Previous research has often focused on specific
application domains or particular aspects of clustering performance, leaving gaps in our understanding of
method selection criteria [20,21]. Furthermore, the increasing availability of high-dimensional and complex
datasets necessitates updated comparative studies that can guide practitioners in method selection.
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Methodology

Simulation Framework

The comparative analysis was conducted using R statistical software (version 4.3.0) with specialized packages
for cluster analysis including 'cluster', 'factoextra’, and 'dendextend'[22].

Data Generation

Synthetic datasets were generated to represent various clustering scenarios commonly encountered in practice.
Five distinct data generation patterns were implemented: (1) well-separated spherical clusters using multivariate
normal distributions, (2) overlapping clusters with varying degrees of separation, (3) clusters with different
densities and sizes, (4) elongated clusters following elliptical distributions, and (5) clusters with added noise
components. Each scenario included 2-6 clusters with sample sizes ranging from 50 to 200 observations per
cluster.

Performance Evaluation Metrics

Multiple evaluation criteria were employed to assess clustering quality: silhouette coefficient measuring cluster
cohesion and separation [23], cophenetic correlation coefficient evaluating dendrogram representation fidelity
[24], Calinski-Harabasz index assessing cluster validity [25], and adjusted rand index comparing results with
known true clusters.

Statistical Analysis

For each combination of clustering method and data scenario, 100 simulation replications were performed to
ensure statistical reliability. Results were analyzed using analysis of variance (ANOVA) to identify significant
performance differences between methods, followed by post-hoc Tukey HSD tests for pairwise comparisons.
Statistical significance was evaluated at o = 0.05 level.

Results
Overall Performance Comparison
Table 1. Overall Performance Metrics Across All Simulation Scenarios

Method Mean Cophenetic Calinski-Harabasz =~ Computation
Silhouette Correlation Index Time (ms)
Single Linkage 0.642 (0.041) = 0.821 (0.032) 142.3 (18.7) 85.2 (12.3)
Complete Linkage = 0.734 (0.038) = 0.798 (0.029) 187.6 (22.4) 91.7 (11.8)
Average Linkage 0.721 (0.036) = 0.856 (0.031) 175.4 (20.1) 96.3 (13.2)
Ward's Method 0.783 (0.033) = 0.742 (0.035) 203.8 (24.6) 102.5 (14.1)

Note: Values represent means with standard deviations in parentheses.

Table 1 provides a comprehensive performance comparison of four hierarchical clustering methods—Single,
Complete, Average Linkage, and Ward’s Method—across all simulated scenarios, revealing statistically
significant performance variations consistent with their mathematical foundations. Ward’s Method excelled in
cluster compactness and separation, achieving the highest silhouette coefficient (0.783) and Calinski-Harabasz
index (203.8), while Single Linkage performed weakest (0.642 and 142.3, respectively) due to chaining effects.
Conversely, Single and Average Linkage showed superior dendrogram fidelity with the highest cophenetic
correlations (0.821 and 0.856), whereas Ward’s had the lowest (0.742), indicating greater distortion in
representing true data distances. Computationally, Single Linkage was fastest (85.2 ms) and Ward’s slowest
(102.5 ms), though time differences were marginal, highlighting that method choice should prioritize clustering
objectives over computational overhead.

One — way Analysis of variance (Anova) Results

Table 2. One-Way ANOVA Results for Clustering Method Performance Comparison

Performance Metric F-value Degrees of p-value Effect Size (n?) Significance
Freedom (df)
Silhouette Coefficient 45.32 (3, 396) <.001 0.256 it
Cophenetic Correlation 38.17 (3, 396) <.001 0.224 ok
Calinski-Harabasz Index 52.43 (3, 396) <.001 0.284 R
Computation Time (ms) 8.76 (3, 396) <.001 0.062 ok

*Note: ***p < .001. Effect size is reported as eta-squared (n?). *

Table 2 reveals the results of the one-way ANOVA presented in Table 3 clearly demonstrate that the choice of
hierarchical clustering method has a statistically significant impact on all performance metrics, as evidenced by
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the extremely low p-values (p < .001) for each measure. The substantial F-values, particularly for the Silhouette
Coefficient (F = 45.32) and Calinski-Harabasz Index (F = 52.43), indicate strong discrimination between
methods in terms of cluster quality, with effect sizes (> = 0.256 and 0.284, respectively) suggesting that
approximately one-quarter to one-third of the variance in these outcomes can be attributed to the clustering
algorithm itself. While still statistically significant, the smaller effect size for Computation Time (n? = 0.062)
indicates that although Ward's method is measurably slower, practical differences in runtime between methods
are relatively modest compared to the substantial differences in clustering quality. These findings collectively
underscore that methodological choice is a crucial determinant of clustering performance, with Ward's method
generally outperforming others in partition quality metrics, while linkage-based methods show advantages in
dendrogram preservation.

Post-Hoc Tukey HSD Analysis
Pairwise comparisons using Tukey's HSD test revealed significant differences between specific methods:
Table 3. Tukey HSD Pairwise Comparisons for Silhouette Coefficient

Comparison Mean Difference 95% CI p-value
Ward's - Single 0.141 [0.112, 0.170] <.001
Ward's - Complete 0.049 [0.020, 0.078] .001
Ward's - Average 0.062 [0.033, 0.091] <.001
Complete - Single 0.092 [0.063, 0.121] <.001
Average - Single 0.079 [0.050, 0.108] <.001
Complete - Average 0.013 [-0.016, 0.042] 489

Table 3 presents the post-hoc Tukey HSD analysis provides detailed insight into the specific pairwise
differences between clustering methods, revealing that Ward's method consistently outperforms all other
approaches with statistically significant superiority in silhouette coefficient (all p < .001 compared to Single,
Complete, and Average Linkage). While both Complete and Average Linkage also significantly surpass Single
Linkage (p < .001), the lack of significant difference between them (p = .489) suggests comparable performance
in cluster cohesion and separation. These results reinforce Ward's method as the optimal choice for partition
quality while highlighting the persistent limitations of Single Linkage due to chaining effects, with the tight
confidence intervals indicating precise estimation of these performance differences across simulation scenarios.

Performance by Data Structure

Table 4. Silhouette Coefficient Performance by Data Structure Type
Data Type Single Linkage = Complete Linkage Average Linkage Ward's Method p-

value
Spherical 0.598 (0.052) 0.756 (0.045) 0.743 (0.043) 0.821 (0.038) <.001
Clusters
Overlapping 0.523 (0.061) 0.687 (0.053) 0.664 (0.049) 0.719 (0.046) <.001
Clusters
Varying 0.641 (0.048) 0.698 (0.044) 0.731 (0.042) 0.743 (0.041) <.001
Densities
Elongated 0.743 (0.046) 0.612 (0.055) 0.683 (0.048) 0.654 (0.050) <.001
Clusters
Noisy Data 0.605 (0.057) 0.718 (0.049) 0.689 (0.047) 0.776 (0.042) <.001

Note: Values represent means with standard deviations in parentheses. ANOVA results show significant main
effects for all data types

Table 4 provides the performance trends across data structures in Table 2 reveal critical method-data
interactions, as Ward’s method dominates in spherical (0.821) and noisy (0.776) clusters due to its variance-
minimization objective, while single linkage excels with elongated structures (0.743) by capturing chain-like
patterns. Complete linkage shows robustness in overlapping clusters (0.687) by minimizing outlier influence,
whereas average linkage delivers consistent mid-tier performance across most scenarios. Notably, all methods
struggle with overlapping clusters (scores < 0.719), reflecting inherent challenges in separating intertwined
distributions, and the pronounced performance variability underscores that optimal method selection is deeply
contingent on underlying data geometry.
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Discussion

The comparative analysis reveals significant performance variations among hierarchical clustering methods,
with clear dependencies on data characteristics. Ward's method demonstrated superior overall performance,
particularly for spherical cluster structures, consistent with its minimum variance optimization criterion. The
method's ability to produce compact, well-separated clusters makes it an excellent choice for datasets where
such structure is expected.

Single linkage showed unique advantages for elongated cluster identification but suffered from chaining effects
in noisy environments. This finding supports theoretical expectations and suggests its optimal use in
applications where non-spherical cluster shapes are anticipated and data quality is high. Complete linkage
exhibited robust performance against outliers and noise, making it suitable for datasets with quality concerns or
unknown cluster properties.

Average linkage provided consistently balanced performance across scenarios, supporting its role as a general-
purpose clustering method. While not optimal for any specific data type, its reliability across diverse conditions
makes it valuable for exploratory analysis when cluster characteristics are unknown.

The computational efficiency analysis showed minimal differences among methods, with all approaches scaling
similarly with dataset size. This finding suggests that performance quality should be the primary consideration
in method selection rather than computational constraints for typical dataset sizes.

Conclusion

This comprehensive comparative study provides evidence-based guidelines for hierarchical clustering method
selection. Ward's method emerges as the preferred choice for datasets with spherical cluster structures, while
single linkage excels for elongated clusters in low-noise environments. Complete linkage offers robustness for
uncertain data quality, and average linkage provides reliable general-purpose performance. Future research
should explore method performance in high-dimensional settings and develop automated selection criteria based
on data characteristics assessment.
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