Libyan Journal of Medical and Applied

Sciences LJIMAS
Online ISSN: 3006-1113
Volume 3, Issue 3, 2025, Page No: 152-156
Website: https://ljmas.com/index.php/journal/index

Periodic Solutions for A Class of Integro-Differential Equations
with Vriable Delay and Exponential Nonlinearity

Yousuf S. Mahmoud '*, Inas A Ibrhim 2, Omar A. Emjahed *
! Department of Mathematics, Faculty of Education, Omar Al-Mukhtar University, Albeida, Libya
23 Department of Mathematics, Faculty of Science, Omer Al-Mukhtar University, Albeida, Libya
“Corresponding author: yousuf.saed@omu.com.ly

Received: June 30, 2025 Accepted: September 07, 2025 Published: September 13, 2025

Cite this article as: Y, S, Mahmoud., I, A, Ibrhim., O, A, Emjahed. (2025). Periodic Solutions for A Class of
Integro-Differential Equations with Vriable Delay and Exponential Nonlinearity. Libyan Journal of Medical and
Applied Sciences (LIMAS). 2025;3(3):152-156.

Abstract

This paper establishes the existence and uniqueness of a periodic solution for a nonlinear integro-differential
equation with variable delay, employing Kwasniewski’s Fixed-point Theorem. We consider the equation x'(t) +
a(t)x(t) + ftt_r(t) K(t,s) - x(s)e *®lds = 0 where a:R - R, 7: R - R* and K: R X R — R are continuous,
w -periodic functions in ¢, with z(¢) satisfying appropriate regularity and boundedness conditions (e.g., 0 < 7(t) <
7, < o ). The nonlinear term x(s)e~ ) exhibits a natural boundedness property: the function f{x)= xe ™! is

globally bounded on R, satisfying | g(x) I< i for all x € R . This crucial feature ensures the integral operator is

well-behaved and facilitates the application of Kwasniewski’s theorem within the Banach space C,,of continuous
w -periodic functions. To apply the theorem, we decompose the associated integral operator into the sum of a
compact operator and a contraction mapping, thereby verifying the requisite conditions. Uniqueness of the periodic
solution is further established through refined differential estimates and a careful analysis of the Lipschitz
properties induced by the exponential nonlinearity. The results presented herein constitute a significant
generalization of prior work in the literature, as they address the challenging combination of variable delay and a
highly nonlinear, non-Lipschitz kernel that cannot be handled by classical methods. This work contributes not
only to the theoretical framework of functional differential equations but also provides a robust analytical tool
applicable to models in population dynamics, neural networks, and control systems with memory effects.

Key words: Periodic solutions, Krasnoselskii fixed point theorem, Integro-differential equations, Variable delay,
Uniqueness.
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Introduction

The study of periodic solutions for differential equations with delays represents a fundamental area of
mathematical analysis with significant applications across various scientific and engineering disciplines. These
functional differential equations provide a natural framework for modeling phenomena in biology, economics,
and physics where a system's future state depends on its historical behavior [1, 2, 3]. The field has been
substantially influenced by foundational work from researchers [3, 4] and others who have investigated existence,
uniqueness, and stability properties for various types of equations, including neutral systems [5, 6, 7, 8] and
sublinear Duffing equations [9].

This paper addresses the existence and uniqueness of periodic solutions for the nonlinear integro-differential

equation with variable delay:
t

x'(t) + a(®)x(t) + j K(t,s) - x(s)e *®lds = 0 ¢))

t—1(t)

where the functions a(t), z(t), and K(t, s) are periodic. This class of equations is particularly relevant as the
integral term captures the cumulative effect of past states over a time-varying interval, a feature commonly
observed in real-world systems. Previous research has examined integrodifferential equations with delays in
various contexts, including studies of positive solutions with unbounded delay [9] and sub-exponential solutions
[10].

The establishment of periodic solutions for such equations constitutes a classical problem typically addressed
through fixed-point theory [11]. Several investigations have applied this methodology to neutral functional
differential equations, as demonstrated in the works of [12,13,14]. While these studies successfully established
existence and uniqueness results for their respective models, our current work addresses a distinct problem
characterized by an exponential nonlinearity combined with variable delay.

The primary objective of this paper is to provide a rigorous proof for the existence and uniqueness of w-periodic
solutions for this equation. Our approach employs the Krasnoselskii Fixed Point Theorem, which effectively
combines both contraction and compactness properties. The exponential nonlinearity g(x) = xe~*! provides
natural boundedness conditions essential for the application of fixed-point theory, while the variable delay z(t)
introduces additional complexity that reflects more realistic system behaviors.

The key contribution of this work lies in its methodological rigor and the derivation of sufficient conditions that
guarantee the existence and uniqueness of periodic solutions. By leveraging the specific properties of the
exponential nonlinearity, we establish precise bounds and Lipschitz constants that facilitate the application of
fixed-point theory.

The remainder of this paper is organized as follows: Section 2 presents necessary definitions and preliminary
results, Section 3 contains our main theorem with detailed proof, and Section 4 summarizes our findings and
presents concluding remarks.

Preliminaries and Notation
Assumptions
The following assumptions are made on the functions in our equation:
1. The function a(t) is continuous and w-periodic, with fow a(t)dt > 0.
2. The delay function 7(t) is continuous and w-periodic, with 0 < 7(t) < 7, for some constant 7.
3. The function K (¢, s) is continuous and w-periodic in t, i.e., K(t + w,s + w) = K(t,s), and its maximum
value is denoted as rrt1551X|K (t,s)|.

Definition 1. The space C,, is the Banach space of continuous w-periodic functions x: R — R with the norm:
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llxll = sup [x(®)].
te[o,w]

Definition 2. The Green's function for the linear equation x'(t) + a(t)x(t) = f(t) is defined as:
e~ fst a(u)du
G(t,s)=————7F5——
( ) 1— e—fo a(w)du
Remark 1. Under Assumption (1), the Green's function is well-defined. It satisfies G (t + w, s + @) = G(t,s) and
there exist constants m, M > 0 such that:
m< |G(t,s)| <M forallt,s € R.

Theorem 1 (Krasnoselskii Fixed Point Theorem). Let M be a closed, convex, nonempty subset of a Banach
space (X, || - ). Suppose that A and B map M into X such that:

1. Ax+By€ Mforallx,y e M,

2. A is compact and continuous,

3. B isa contraction mapping.
Then there exists z € M with z = Az + Bz.

Main Results

We transform equation (1) into an equivalent integral equation. An w periodic solution to (1) is a fixed point of

the operator T: C,, — C,, defined by:
o =- |

t—

t

G(t,s) US_ . K(s,w)x(w)e *®ldu|ds @)

Lemma 2. For the function g(x) = xe~1*l, we have:
1. |g®)] SiforalleIR
2. 1g(x) —g()| < |x—y|forallx,y € R

Proof. For x > O,g(x) =xe ¥, and g'(x) = (1 — x)e~*. The critical point is at x = 1, where g(1) = 1/e. For
x<0,9(x) =xe*, and g'(x) = (1 + x)e*. The critical point is at x = —1, where g(—1) = —1/e. Since g is
an odd function, the maximum absolute value is sup lgx)| =1/e.

For the Lipschitz property, we find the supremum of lg' ()] :
e Forx>0:1g9'(x)| =[(1 —x)e | < 1( achieved at x = 0)
e Forx<O0:1g'(x)| =[(1+x)e*| <1 (limitasx - 07)
Thus, sup|g’(x)| = 1. By the Mean Value Theorem, |g(x) — g(¥)| < |x — y|.
xER

Lemma 3. The operator T: C,, = C,, defined in (2) is well-defined and maps C,, into itself.
Proof. Let x € C,,. Define the inner integral:

S
1(s) =j K(s,u)x(u)e *®ldy
s=1(s)

Since K(s,u), 7(s), and x(uw)e~*®! are continuous and the integration interval is compact, I(s) is continuous.
By periodicity of K, T, and x, we have:

S+w — N —
Is+w)={ K(s + w,w)x(u)e *®Wlidy = fs_r(s) K(s,v)x(v)e *®ldy = I(s),

Stw-t(s+w)
using the substitution v = u — w. Thus, I(s) is w-periodic.
Now, (Tx)(t) = — [

-, G (&, 8)I(s)ds. Since G(¢,s) and I(s) are continuous, Tx is continuous. The periodicity

follows from:
t

G(t+ w,8)I(s)ds = —f G(t,w)l(w)du = (Tx)(t)

t-w

t+w

Tx)(t+w)= —f

t

using the periodicity of G and I.
Lemma 4. The operator A: C,, = C,, defined by

t N

(Ax)(t) = —f G(t,s) [f K(s, u)x(u)e""“”'du] ds
t-w s—1(5)

is compact and continuous.

Proof. For continuity, let x,y € C,,. Then:
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lAx — Ayl = S [(Ax) () — (Ay) ()]

< M-rrtlax|K(t,s)| Jlx =yl w1
,S

Thus, A is continuous.
For compactness, let S © C,, be bounded. For x € S, we have:

1
[(A)(@)| <M - ngax|K(t, s)| o W - Ty
,S

so A(S) is uniformly bounded.
To show equicontinuity, we compute the derivative of (Ax)(t). Let D = 1 — e~ Jo @4 Thep;

4 =L f
t

=— [G(t, OI) — G(t, t —w)I(t — w) + f %G(t, s)I(s)ds]
t—w

t

G(t,9)I(s) ds)

—w

e~ fow a(u)du

D

t

- - %I(t) - I(t — w) + ft_w (—a@®)a(t, S)I(S)dsl

1 w
= [1®) — e et — )| + a(®)(Ax) (©)
Since |I(t)]| < ngale(t, s)| 'i"fo: |a(t)| is bounded by continuity and periodicity, and |(Ax)(t)| is bounded,
,S
there exists L > 0 such that:

|%(Ax)(t)| <L
forallt € [0,w] and x € S. Thus, A(S) is equicontinuous.
By Arzela-Ascoli theorem, A(S) is relatively compact.
Lemma 5. The operator B: C,, = C,, defined by Bx = 0 is a contraction mapping.
Proof. Trivially, [|Bx —By|| =0 < A||x —y|| forany 0 < 1 < 1.
Theorem 6 (Existence Theorem). Under assumptions (1)-(3) and if

M- -w-1, -ngale(t,s)l <1
,S

then equation (1) has at least one w-periodic solution.
Proof. We begin by defining the set M = {x € C,:||x|| < R}, which constitutes a closed, convex, and nonempty
subset of the Banach space C,,. The constant R is selected to satisfy the inequality:

1
R>=M - -max|K(t,s)|-— w-1q
t,s e

To verify the first condition of Krasnoselskii's Fixed Point Theorem, we demonstrate that Ax + By € M for all
x,y € M. By the definition of our operators, we have Ax + By = Ax + 0 = Ax. To establish that Ax € M, we
must show that ||Ax|| < R. Employing the uniform bound derived in Lemma 4, we observe that for any x € M :

1
[|Ax|| = sup |(Ax)(®)| < M -max|K(t,s)| — - w T,
te[o,w] t,s e

Our initial selection of R ensures that ||Ax|| < R, thereby confirming that Ax remains within the set M.
Furthermore, Lemma 4 establishes that the operator A is both compact and continuous. Additionally, Lemma 5
demonstrates that the operator B constitutes a contraction mapping.

Consequently, since all conditions of Theorem 1 are satisfied, there exists a fixed point z € M such that z = Az +
Bz = Az. This fixed point z represents an w-periodic solution to equation (1), which completes the proof.
Theorem 7 (Uniqueness Theorem). Under the same conditions as Theorem 6. the periodic solution is unique.
Proof. Suppose x and y are two fixed points. Then:

llx =yl = ITx =Tyl
= ||Ax — Ay||
<M -max|K(t, )| - |lx =yl - @ 7o
S

=Alx =yl
whered =M - w -1, -rrtlaX|K(t,s)| < 1.Thus, ||lx —y||=0,s0x =y. O
.S
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Conclusion

We have established the existence and uniqueness of periodic solutions for a class of nonlinear integro-differential
equations with variable delay. The proof relies on the application of the Krasnoselskii Fixed Point Theorem,
following the established methodology in the literature. By rigorously analyzing the boundedness and Lipschitz
properties of the exponential nonlinearity, we derived a set of sufficient conditions on the equation's coefficients
that guarantee a unique periodic solution. The presented approach provides a clear and robust framework for
addressing this problem.
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