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Abstract:  

Bootstrap methods have emerged as powerful non-parametric tools for statistical inference, particularly when 

dealing with non-normal data distributions where traditional parametric assumptions fail. This simulation study 

compares the performance of traditional bootstrap and bias-corrected and accelerated (BCa) bootstrap methods in 
constructing confidence intervals for non-normal data. We conducted extensive Monte Carlo simulations across 

various non-normal distributions including exponential, chi-square, and beta distributions with different sample 

sizes (n = 30, 50, 100, 200). Performance metrics evaluated include coverage probability, interval width, and 

computational efficiency. Our results demonstrate that BCa bootstrap consistently outperforms traditional 

bootstrap methods, achieving coverage probabilities closer to the nominal 95% level across all tested distributions. 

The BCa method showed superior performance particularly for heavily skewed distributions and smaller sample 

sizes, with coverage probabilities ranging from 94.2% to 95.8% compared to 89.3% to 93.7% for traditional 

bootstrap. While BCa bootstrap requires approximately 15-20% more computational time, the improved accuracy 

justifies this cost. These findings provide valuable insights for practitioners dealing with non-normal data and 

contribute to the growing body of literature on robust statistical inference methods . 

 

Keywords: Bootstrap methods, BCa Bootstrap, Confidence Intervals, Non-normal Data, Simulation Study, R- 

Programming. 

المعدّلة للتحيز  البوتستراب   يقةمقارنة الأداء بين طريقة البوتستراب التقليدية وطر

غير الطبيعية: دراسة محاكاة الوالتسارع في بناء فترات الثقة للبيانات    
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 قسم الرياضيات، كلية الآداب والعلوم، جامعة سبها، سبها، ليبيا  2   
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 الملخص 

لقد برزت طرق البوتستراب كأدوات غير معلمية قوية للاستدلال الإحصائي، ولا سيما عند التعامل مع التوزيعات غير  

الطبيعية التي تفشل فيها الافتراضات المعلمية التقليدية. تقُارن هذه الدراسة المحاكاة بين أداء طريقتي البوتستراب التقليدية 

في بناء فترات الثقة للبيانات غير الطبيعية. أجُريت محاكاة مونت   (BCa) والمسرّع وبوتستراب التصحيح المصحح للتحيز

البيتي، -كارلو على نطاق واسع عبر توزيعات غير طبيعية مختلفة، تشمل التوزيع الأسي، وتوزيع كاي تربيع، والتوزيع 
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وشملت مقاييس الأداء المُقيَّمة احتمال التغطية، وعرض الفترات،  .(n = 30  ،50  ،100  ،200) وبأحجام عينات مختلفة

تتفوق باستمرار على طريقة البوتستراب التقليدية، حيث تحقق احتمالات  BCa والكفاءة الحاسوبية. تظُهر نتائجنا أن طريقة

أداءً أفضل بشكل  BCa % عبر جميع التوزيعات المختبرة. وأظهرت طريقة95تغطية أقرب إلى المستوى الاسمية البالغ  

%،  95.8% و94.2خاص مع التوزيعات شديدة الالتواء وأحجام العينات الصغيرة، حيث تراوحت احتمالات التغطية بين  

-15اسوبيًا يزيد بنسبة  تتطلب وقتاً ح  BCa % للبوتستراب التقليدي. وعلى الرغم من أن طريقة93.7% إلى  89.3مقارنةً بـ  

ر هذا العبء الإضافي. تعُدّ هذه النتائج مصدرًا قيمًا من البصيرة للممارسين الذين يعملون % تقريبًا، فإن الدقة المحسّنة تبر20

 .مع بيانات غير طبيعية، وتساهم في الجسم المتنامي من الأدبيات المتعلقة بأساليب الاستدلال الإحصائي القوية
 

 .، فترات الثقة، البيانات غير الطبيعية، دراسة محاكاة، برمجةBCaطرق البوتستراب، البوتستراب  الكلمات المفتاحية: 

Introduction 

Statistical inference traditionally relies on parametric methods that assume specific probability distributions, most 

commonly the normal distribution. However, real-world data frequently violate these assumptions, presenting 

challenges for accurate parameter estimation and confidence interval construction [1]. Bootstrap methods, 

introduced by Efron in 1979, have revolutionized statistical inference by providing non-parametric alternatives 

that make minimal distributional assumptions [2] . 

The traditional bootstrap method, also known as the percentile bootstrap, constructs confidence intervals by 
resampling the original data with replacement and using the empirical distribution of bootstrap statistics [3]. While 

this approach has proven valuable across numerous applications, it suffers from bias and skewness issues, 

particularly when dealing with non-normal data distributions [4]. These limitations have motivated the 

development of more sophisticated bootstrap variants, most notably the bias-corrected and accelerated (BCa) 

bootstrap method . 

The BCa bootstrap, developed by Efron and subsequently refined by various researchers, addresses the 

shortcomings of traditional bootstrap by incorporating bias correction and acceleration parameters [5]. The bias 

correction adjusts for the systematic deviation between the bootstrap distribution and the true sampling 

distribution, while the acceleration parameter accounts for the rate of change in the standard error with respect to 

the parameter of interest [6] . 

Recent advances in computational statistics have facilitated extensive comparative studies of bootstrap 
methods.[7] demonstrated that BCa bootstrap provides superior coverage properties for skewed distributions, 

while maintaining computational feasibility for moderate sample sizes. Similarly, [8] showed that the choice of 

bootstrap method significantly impacts inference quality in biomedical applications where non-normal data are 

prevalent . 

The performance of bootstrap methods is particularly crucial in modern data analysis contexts where non-normal 

distributions are increasingly common. Financial data often exhibit heavy tails and skewness [9], while biological 

and environmental data frequently follow exponential or gamma distributions [10]. In these contexts, the accuracy 

of confidence intervals directly impacts decision- making and scientific conclusions . 

Several recent studies have investigated specific aspects of bootstrap performance. [11] focused on small sample 

performance, finding that BCa bootstrap maintains reasonable coverage even with samples as small as 20 

observations. [12] examined computational aspects, developing efficient algorithms that reduce the computational 

burden of BCa bootstrap while preserving its statistical advantages . 
The theoretical foundations of bootstrap methods continue to evolve. [13] provided refined asymptotic theory for 

BCa bootstrap, establishing conditions under which second-order accuracy is achieved. This theoretical work 

complements empirical studies by providing deeper understanding of when and why BCa bootstrap outperforms 

traditional methods . 

Machine learning applications have also driven interest in robust bootstrap methods. [14] demonstrated that 

bootstrap confidence intervals for prediction accuracy metrics require careful consideration of the underlying data 

distribution, with BCa methods showing superior performance for imbalanced datasets . 

Environmental statistics presents another domain where bootstrap methods prove essential.[15] applied various 

bootstrap methods to climate data, finding that traditional bootstrap methods often failed to capture the true 

uncertainty in temperature and precipitation projections, while BCa methods provided more reliable intervals . 

The increasing availability of high-performance computing resources has enabled more comprehensive simulation 
studies. Recent work by [16] utilized parallel computing to conduct simulations with millions of replications, 

providing unprecedented precision in evaluating bootstrap method performance across diverse scenarios . 

Quality control and industrial applications have also benefited from improved bootstrap methods. [17] showed 

that BCa bootstrap provides more accurate capability indices for non-normal process data, leading to better quality 

decisions in manufacturing environments . 

 Educational research has highlighted the importance of proper bootstrap method selection.[18] found that 

undergraduate statistics courses often oversimplify bootstrap concepts, leading to inappropriate method selection 



117 | Libyan Journal of Medical and Applied Sciences LJMAS)   

 

in practice. Their work emphasizes the need for better understanding of when different bootstrap variants are 

appropriate . 

Despite extensive research, gaps remain in our understanding of bootstrap method performance. Most comparative 

studies focus on specific distribution types or limited sample size ranges. Additionally, the computational trade-

offs between accuracy and efficiency require further investigation, particularly as datasets continue to grow in 
size and complexity . 

This study addresses these gaps by conducting a comprehensive simulation study comparing traditional bootstrap 

and BCa methods across multiple non-normal distributions and sample sizes. Our objectives are to: (1) quantify 

the coverage probability differences between methods across various scenarios, (2) evaluate the trade-offs 

between statistical accuracy and computational efficiency, (3) provide practical guidance for method selection 

based on data characteristics, and (4) identify scenarios where the additional complexity of BCa bootstrap is most 

justified. 

 

Methodology 

Our simulation study employed a comprehensive design to evaluate the performance of traditional bootstrap and 

BCa bootstrap methods across various non-normal data distributions. We generated data from four different 

distribution families: exponential (rate = 1), chi-square (df = 3), beta (α = 2, β = 5), and log-normal (μ = 0, σ = 1). 
Sample sizes tested included n = 30, 50, 100, and 200 to examine performance across small to moderate sample 

sizes.  

For each combination of distribution and sample size, we conducted 10,000 Monte Carlo replications to ensure 

reliable estimates of coverage probabilities and other performance metrics. Bootstrap confidence intervals were 

constructed using B = 1,000 bootstrap samples, following recommendations from recent literature for balancing 

accuracy and computational efficiency . 

Performance metrics included: (1) coverage probability - the proportion of confidence intervals containing the 

true parameter, (2) average interval width - measuring precision of estimates, (3) computational time - assessing 

practical feasibility, and (4) bias in interval endpoints - evaluating systematic errors . 

 

Results 

The simulation results demonstrate clear performance differences between traditional bootstrap and BCa bootstrap 

methods across all tested scenarios. We present comprehensive results for all four distributions (exponential, chi-

square, beta, and log- normal) across four sample sizes (n = 30, 50, 100, 200). 

 

Coverage Probability Analysis 

 

Table 1. Coverage Probabilities (%) for 95% Confidence Intervals Across All distributions and Sample Sizes 

Distribution Sample size Traditional Bootstrap BCa Bootstrap Improvement P- value 

 

Exponential (λ=1) 

30 89.3 94.2 +4.9 0.001 

50 91.1 94.8 +3.7 0.001 

100 92.7 95.1 +2.4 0.001 

200 93.7 95.3 +1.6 0.001 

 

Chi-square (df=3) 30 90.2 94.6 +4.4 0.001 

50 91.8 95.2 +3.4 0.001 

100 92.9 95 +2.1 0.001 

200 93.8 95.2 +1.4 0.001 

 

 

Beta 

(α=2, β=5 

30 92.1 95.0 +2.9 0.001 

50 93.2 95.4 +2.2 0.001 

100 94.1 95.6 +1.5 0.01 

200 94.5 95.7 +1.2 0.05 

 

Log-normal (μ=0, σ=1) 30 88.9 94.7 +5.8 0.001 

50 90.6 95.1 +4.5 0.001 

100 92.3 95.4 +3.1 0.001 

200 93.5 95.8 +2.3 0.001 

 

Table 1 demonstrates that BCa bootstrap consistently achieves coverage probabilities closer to the nominal 95% 

level across all distributions and sample sizes. The improvement is most pronounced for heavily skewed 

distributions (exponential and log- normal) and smaller sample sizes. Log-normal distribution shows the largest 
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improvements (+5.8% at n=30), while beta distribution shows the smallest but still significant improvements. All 

differences are statistically significant based on two- proportion z-tests. 

 

Interval Width Comparison 

 
Table 2. Average Confidence Interval Widths Across All Distributions and Sample Sizes 

Distribution Sample 

size 

Traditional 

Bootstrap 

BCa 

Bootstrap 

Relative 

difference % 

 
 

Exponential (λ=1) 

30 1.245 1.287 +3.4 

50 0.968 0.991 +2.4 

100 0.681 0.693 +1.8 

200 0.482 0.489 +1.5 

 

Chi-square (df=3) 30 2.156 2.201 +2.1 

50 1.678 1.702 +1.4 

100 1.089 1.098 +0.8 

200 0.789 0.793 +0.5 

 

 

Beta 

(α=2, β=5) 

30 0.267 0.275 +3.0 

50 0.234 0.241 +3.0 

100 0.165 0.169 +2.4 

200 0.117 0.119 +1.7 

 

Log-normal (μ=0, 

σ=1) 

30 3.789 3.921 +3.5 

50 2.945 3.023 +2.6 

100 2.087 2.124 +1.8 

200 1.476 1.489 +0.9 

 

Table 2 shows that BCa bootstrap intervals are consistently wider than traditional bootstrap intervals across all 

scenarios, with relative differences ranging from 0.5% to 3.5%. The width penalty decreases as sample size 

increases and is generally smaller for less skewed distributions (chi-square and beta). The modest increase in 

interval width represents a favorable trade-off for the substantial improvements in coverage accuracy shown in 

Table 1. 

 

Computational Performance 

 

Table 3. Computational Time Comparison (seconds per 1000 replications) 
Sample size Traditional Bootstrap BCa Bootstrap Time Ratio Overhead (%) 

30 2.14 2.51 1.17 17.3 

50 2.98 3.48 1.17 16.8 

100 4.67 5.52 1.18 18.2 

200 8.23 9.81 1.19 19.2 

 

Table 3 reveals that BCa bootstrap requires approximately 17-19% more computational time than 

traditional bootstrap across all sample sizes. The computational overhead remains relatively stable as 

sample size increases, ranging from 16.8% to 19.2%. This consistent overhead makes BCa bootstrap 
computationally feasible even for larger datasets, with the performance benefits clearly justifying the 

additional computational cost. 

 
Distribution-Specific Performance Summary 

Table 4. Performance Summary by Distribution Type (Averaged Across All Sample Sizes) 
Distribution Skewness Traditional 

Bootstrap 

BCa 

Bootstrap 

Average 

Improvement 

Width Penalty 

(%) 

Log-normal 6.18 91.3 95.3 +4.0 2.2 

Exponential 2.00 91.7 94.9 +3.2 2.3 

Chi-square 1.63 92.2 95.0 +2.8 1.2 

Beta 0.57 93.5 95.4 +1.9 2.5 



119 | Libyan Journal of Medical and Applied Sciences LJMAS)   

 

 
Table 4 demonstrates a clear relationship between distribution skewness and BCa bootstrap advantage. The most 

heavily skewed distribution (log-normal) shows the largest coverage improvement (+4.0%), while the least 
skewed distribution (beta) shows the smallest improvement (+1.9%). However, even for the beta distribution, BCa 

bootstrap provides statistically significant and practically meaningful improvements. The width penalty remains 

modest across all distributions, ranging from 1.2% to 2.5%. 

 

Discussion 

Our simulation results provide compelling evidence for the superior performance of BCa bootstrap 

methods when constructing confidence intervals for non-normal data. These findings align with and 

extend previous research in several important ways . 
The coverage probability results strongly support the theoretical advantages of BCa bootstrap 

documented by [1]. Our finding that BCa bootstrap achieves coverage probabilities consistently above 

94% across all tested scenarios confirms the method's second-order accuracy properties. This is 

particularly notable for heavily skewed distributions like exponential and log-normal, where traditional 
bootstrap methods showed substantial under coverage, achieving only 88-92% coverage. 

The performance differences we observed are consistent with the theoretical work of [4], who predicted 

that bias correction would be most beneficial for skewed distributions. Our results extend their findings 
by quantifying these benefits across multiple distribution types and sample sizes, providing practical 

guidance for method selection . 

Compared to the study by [7], our results show similar patterns but with slightly better BCa 

performance, possibly due to our use of 1,000 bootstrap samples rather than their 500. This suggests 
that the number of bootstrap replications significantly impacts BCa performance, particularly for 

smaller sample sizes . 

The computational overhead we documented (17-19% increase) is lower than reported by [12], who 
found 25-30% increases. This difference may reflect improvements in implementation efficiency or 

differences in computing environments. Importantly, our results demonstrate that this computational 

cost remains manageable and relatively constant across sample sizes . 
Our interval width analysis reveals an important trade-off: BCa intervals are 0.8-3.4% wider than 

traditional bootstrap intervals, but this small precision cost yields substantial improvements in coverage 

accuracy. This finding supports the conclusions of [11] that the accuracy gains justify the modest 

reduction in precision . 
The practical implications of our findings are significant for applied statisticians. In scenarios involving 

non-normal data, particularly with small to moderate sample sizes, BCa bootstrap should be preferred 

despite its computational overhead. The coverage improvements we documented translate directly to 
more reliable statistical inference and better-calibrated uncertainty quantification . 

 

Conclusion 
This comprehensive simulation study provides strong empirical evidence supporting the superiority of BCa 

bootstrap methods over traditional bootstrap approaches for constructing confidence intervals with non-normal 

data. Our results demonstrate that BCa bootstrap consistently achieves coverage probabilities closer to nominal 
levels across all tested distributions and sample sizes, with particularly pronounced advantages for heavily skewed 

distributions . 

 The practical implications of our findings are clear: despite the 17-19% computational overhead, BCa bootstrap 

should be the preferred method when dealing with non-normal data, especially when accurate uncertainty 

quantification is critical. The modest increase in interval width (0.8-3.4%) represents a favorable trade-off for 

substantially improved coverage accuracy . 

Future research directions include extending these comparisons to other bootstrap variants such as studentized 

bootstrap and examining performance with extremely small samples (n < 30). Additionally, investigating the 

performance of these methods with multivariate non-normal data and complex survey designs would provide 

valuable insights for applied researchers . 

Our implementation code in both R provides practitioners with readily applicable tools for implementing these 
methods in their own analyses, contributing to the broader adoption of robust statistical inference techniques in 

data analysis workflows . 
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